

Results outside the normal range are highlighted red

Results with borderline values are highlighted yellow Results within the normal range are highlighted green

Oil Analysis Report

Name:	Тс	otal Seal Piston Rings	Sample Type		Engine	
Unit ID:	Break-In Oils		Condition		New Oil Report	
Sample Information				Sample In	formation 🛛	
Sample ID #:	SDS-430		SDS-422	SDS-423	SDS-424	SDS-425
Sample Date:	12/27/2019		12/30/2019	12/27/2019	12/27/2019	12/27/2019
Oil Brand:	Maxima		Motul	HPL	Torco	Jegs
Viscosity Grade:	10W-30		10W-40	5W-30	30	10W-30
Oil Properties	Test Results	Legend		Test F	Results	
/iscosity @ 100C:	10.1	cSt Flow Measurement	15.7	10.3	10.5	10.4
Oxidation Value:	4.8	Oil Life	4.7	7.2	7.9	8.1
ГВN:	4.87	Total Base Number	3.99	S 9.51	8.76	6.95
Silicon:	6	Anti-Foam Additive	2	6	5	10
Additives (ppm):						
Calcium	2592	Detergent	2	3151	3598	2333
Sodium	0	Detergent	0	0	0	0
Magnesium	6	Detergent	992	370	14	151
Phosphorus	2681	Anti-Wear	1342	1094	1126	4218
Zinc	3731	Anti-Wear	1303	1262	994	4110
Molybdenum	0	Friction Reducer	0	82	0	45
Boron	25	Friction Reducer	0	204	0	63
Sample Information				Sample In	formation 🛛	
Sample ID #:	SDS-426		SDS-427	SDS-428	SDS-429	AAA-0400
Sample Date:	12/27/2019		12/27/2009	12/27/2019	12/27/2019	12/30/2019
Oil Brand:	Blueprint		Edelbrock	Royal Purple	VP Racing Fuel	zMax Break-I
Viscosity Grade:	30		30	10W-30	10W-40	15W-50
Oil Properties	Test Results					
/iscosity @ 100C:	11.0	cSt Flow Measurement	9.5	11.3	14.8	20.2
Oxidation Value:	23.3	Oil Life	7.1	2 12.0	27.3	28.0
	2.38	Total Base Number	8.45	8.9	6.55	5.13
Silicon:	11	Anti-Foam Additive	S 5	6	✓ 4	✓ 3
Additives (ppm):						
Calcium	2509	Detergent	4461	2392	2212	1695
Sodium	0	Detergent	0	0	0	204
Magnesium	9	Detergent	28	324	7	18
Phosphorus	3408	Anti-Wear	1156	1116	1309	2471
Zinc	3667	Anti-Wear	1421	882	575	2251
Molybdenum	0	Friction Reducer	0	0	555	62
IVIOIYDUEIIUIII			0	0	0	149

Results outside the normal range are highlighted red Results with borderline values are highlighted yellow

Results within the normal range are highlighted green

Oil Analysis Report

Name:	To	otal Seal Piston Rings	Sample Type		Engine			
Unit ID:	Break-In Oils		Condition	Condition:		New Oil Report		
Sample Information				Sample In	formation 🛛			
Sample ID #:	SDS-0467		SDS-0463	SDS-0465	SDS-0446	SDS-0449		
Sample Date:	11/23/2019		11/23/2019	11/23/2019	11/23/2019	11/23/2019		
Oil Brand:	Swepco		Driven BR40	Rotella T	Valvoline Pro-V	Schaeffer's		
Viscosity Grade:	15W-40		10W-40	15W-40	10W-30	15W-40		
Oil Properties	Test Results	Legend	Test Results					
/iscosity @ 100C:	13.5	cSt Flow Measurement	14.5	14.8	10.5	15.0		
Oxidation Value:	8.1	Oil Life	3.6	14.6	7.2	12.7		
ГBN:	8 11.01	Total Base Number	1.64	6.93	4.86	.64		
Silicon:	v 4	Anti-Foam Additive	1	5	11	6		
Additives (ppm):								
Calcium	3543	Detergent	353	2337	2040	1922		
Sodium	2	Detergent	1	4	484	12		
Magnesium	8	Detergent	8	12	12	15		
Phosphorus	1502	Anti-Wear	2879	1252	2308	2820		
Zinc	1265	Anti-Wear	2870	1347	2109	2509		
Molybdenum	100	Friction Reducer	2	0	1188	339		
Boron	73	Friction Reducer	1	165	3	77		
Sample Information				Sample In	formation 🛛			
Sample ID #:	SDS-0444		SDS-0445	SDS-0443	SDS-0442	SDS-0441		
Sample Date:	11/26/2019		11/26/2019	12/27/2019	12/27/2019	12/27/2019		
Oil Brand:	PennGrade		Comp Cams	Lucas	Amsoil	Brad Penn		
Viscosity Grade:	20W-50		10W-30	30	30	30		
Oil Properties	Test Results	Legend	Test Results					
/iscosity @ 100C:	21.4	cSt Flow Measurement	10.6	11.5	11.1	11.2		
Oxidation Value:	11.4	Oil Life	9.6	2.5	8.3	7.9		
ГBN:	8.4	Total Base Number	9.6	3.67	5.35	6.66		
Silicon:	1	Anti-Foam Additive	3	6	5	S		
Additives (ppm):								
Calcium	1980	Detergent	3765	1735	2266	2299		
Sodium	516	Detergent	1	0	0	14		
Magnesium	649	Detergent	12	0	11	15		
Phosphorus	1610	Anti-Wear	2568	4809	2340	904		
Zinc	1781	Anti-Wear	2264	4466	2716	769		
Molybdenum	0	Friction Reducer	140	0	0	0		
Worybachain			3	0	13	0		

Results outside the normal range are highlighted red

Results with borderline values are highlighted yellow Results within the normal range are highlighted green

Oil Analysis Report

Name:	То	tal Seal Piston Rings	Sample Type		Engine				
Unit ID:		Break-In Oils		n:	New Oil Report				
Sample Information				Sample In	formation 🛛				
Sample ID #:	SDS-468		SDS-472	SDS-469	SDS-470	SDS-471			
Sample Date:	12/30/2019		11/20/2019	12/30/2019	12/27/2019	12/27/2019			
Oil Brand:	Shell ND		Valvoline VR1	GP-1 Break-In	GP-1 Race	BR10			
Viscosity Grade:	30		20W-50	30	20W-50	10W			
Oil Properties	Test Results	Legend		Test	Results				
Viscosity @ 100C:	11.9	cSt Flow Measurement	20.4	9.8	18.9	5.1			
Oxidation Value:	4.0	Oil Life	9.3	5.8	7.8	13.9			
ΓBN:	0.9	Total Base Number	8 7.6	✓ 1.4	6.7	✓ 1.1			
Silicon:	O	Anti-Foam Additive	9	3	3	9			
Additives (ppm):									
Calcium	0	Detergent	1090	209	2144	267			
Sodium	0	Detergent	0	0	0	0			
Magnesium	0	Detergent	528	0	0	0			
Phosphorus	0	Anti-Wear	1303	1965	1591	3184			
Zinc	0	Anti-Wear	1475	1888	1617	3922			
Molybdenum	0	Friction Reducer	50	0	359	0			
Boron	0	Friction Reducer	176	0	139	0			
Sample Information				Sample In	formation 🛛				
Sample ID #:	SDS-473		0	0	0	0			
Sample Date:	12/27/2019		1/0/1900	1/0/1900	1/0/1900	1/0/1900			
Oil Brand:	John Deere Break-In		0	0	0	0			
Viscosity Grade:	10W-30		0	0	0	0			
Oil Properties	Test Results	Test Results Legend			Test Results				
Viscosity @ 100C:	10.2	cSt Flow Measurement	O .0	0.0	0.0	0.0			
Oxidation Value:	12.2	Oil Life	O .0	0.0	0.0	O .0			
TBN:	8 7.52	Total Base Number	O	O	0	O			
Silicon:	6	Anti-Foam Additive	O	O	0	O			
Additives (ppm):									
Calcium	1429	Detergent	0	0	0	0			
Sodium	0	Detergent	0	0	0	0			
Magnesium	833	Detergent	0	0	0	0			
Phosphorus	1119	Anti-Wear	0	0	0	0			
Zinc	957	Anti-Wear	0	0	0	0			
Molybdenum	251	Friction Reducer	0	0	0	0			
Boron	273	Friction Reducer	0	0	0	0			
Comments / Recommendations									

Results outside the normal range are highlighted red

Results with borderline values are highlighted yellow

Results within the normal range are highlighted green

Oil Analysis Report - Explained

		Oli Aliaiysis Repu	rit - Explain <u>ieu</u>				
	Name:	The name of the customer	Sample Type:	The type of equipment the sample was taken from			
	Unit ID:	The ID of the equipment sampled	Condition:	The overall condition of the sample			
Sampl	e Information						
ample ID #:		ID Number from the sample bottle. Each SPEEDiagnostix sa	mple kit features a unique ID) number that provides traceability for each sample.			
Sample Date:		The date the sample was taken. Knowing when samples we	re taken is very important in	the trend analysis process.			
Oil Brand:		The brand of the oil used. This information can be used to c	compared the used oil results	s to the specifications of the new oil (if available).			
Viscosity Grade	:	The viscosity grade of the oil. The results of the lab viscosity	y test is compared to the nev	v oil viscosity to gauge the health of the oil.			
Mileage:		The number of miles on the oil. This is critical information ir	n the evaluation and calculat	ion of the wear rate.			
C)il Health	Test Descriptions					
Viscosity @ 10	DC:	Viscosity measurement to check whether or not the oil is still in the correct viscosity range. A change in viscosity means a change in oil health.					
Oxidation Valu	e:	Oxidation is the chemical breakdown of the oil. The higher t	the number, the greater the	oxidation, which means greater oil degradation.			
Fuel Dilution:		Fuel dilution lowers the viscosity of the oil and indicates tur	ne up or fuel delivery probler	ns. POSITIVE indicates abnormal fuel dilution levels.			
Water:		The presence of water in the oil indicates a problem. Water	r can come from a coolant lea	ak or from extended low temperature operation.			
Glycol:		POSITIVE indicates glycol contamination, which typically cor	mes from a coolant leak. Gly	col will destroy the lubricating properties of the oil.			
Potassium:		Potassium can also indicate coolant contamination, which t	pically comes from a blown	head gasket. Potassium levels under 10 are normal.			
Silicon:		Silicon can come from the anti-foam additive in the oil, airb	orne dust entering the engin	e, silicone sealants, or piston and Alusil bore wear.			
Additives (ppm):	Different types of oil will contain various additives, so the individual additive types and levels will vary according to application.					
	Calcium	is a detergent additive that keeps parts clean, prevents rust and neutralizes acids. It is typically found in motor oils and transmission fluids.					
	Sodium	is also a detergent additive that keeps parts clean and neutralizes acids. It is found in some motor oils.					
Magnesiun		is also a detergent additive that keeps parts clean and neutralizes acids. It is found in some motor oils and transmission fluids.					
	Phosphorus	is an anti-wear additive, and it typically comes from ZDDP. Phosphorus is a key anti-wear additive, and it is limited in API licensed oils.					
	Zinc	is an anti-wear additive and anti-oxidant, and it also comes from ZDDP. Combined with Phosphorus, Zinc is a key anti-wear additive in motor oils.					
	Molybdenum	is a multi-functional additive. Molybdenum provides anti-wear protection, reduces friction and inhibits oxidation.					
	Boron	reduces friction and reduces wear. Boron is typically used in combination with Molybdenum and ZDDP.					
Equip	oment Health	Test Descriptions					
Wear Trend:	Wear Metals (ppm):	The parts per million (ppm) of metals in the oil from worn p	parts in the engine, transmiss	sion, gear box, etc			
		is the main element in steel and cast iron, so the presence of					
	Chromium	is an alloy combined with iron to make steel, so the presence	ce of Chromium in the oil ind	licates wear of steel parts.			
	Copper	is an alloy combined with tin to make bronze, which is a cor	mmon material used to make	e bushings. Also, copper is used to make Babbitt bearings.			
	Tin	is an alloy combined with copper to make bronze, which is a	a common material used to r	make bushings. Also, tin is used to make Babbitt bearings.			
	Lead	is an alloy in Babbitt bearings, which are commonly used in	automotive engines. Lead is	also an anti-knock compound that is found in leaded fuel			
	Aluminum	is the main element in most pistons, and some engines utili	ze aluminum cylinder bores.	So, the presence of Aluminum indicates piston and bore			
	Manganese	is an alloy used in Manganese Bronze, which is a high streng	gth bronze often used in valv	e guides. It is also found in Octane boosters.			
	Titanium	is a lightweight metal that is sometimes used in racing engir	nes to make parts such as va	lve spring retainers. Also, Titanium is an additive in some			
	Vanadium	is an alloy combined with iron to make steel, so the presence	ce of Vanadium in the oil ind	icates wear of steel parts such as crankshafts or gears.			
Total Metals		The total of all wear metals in parts per million (ppm) from	the sample. This is helpful in	determining the overall wear rate.			
	Wear / 1,000 miles:	This is the wear rate, and it is a calculation of the total wear	r metals divided by the num	per of miles on the oil to yield the rate of wear per 1,000			
Comments / Re	ecommendations						
*** Wear Trend	d: Statistical analysis of	the trend in wear rates for each wear metal over the history	of samples taken from this	piece of equipment. The wear trend can help detect			
	•	, each caution or warning levels. Taking used oil samples on a					
the life of equip	ment		-	· ·			